Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum.
نویسندگان
چکیده
Corynebacterium glutamicum possesses both phosphoenolpyruvate carboxylase (PEPCx) and pyruvate carboxylase (PCx) as anaplerotic enzymes for growth on carbohydrates. To analyze the significance of PCx for the amino acid production by this organism, the wild-type pyc gene, encoding PCx, was used for the construction of defined pyc-inactive and pyc-overexpressing strains and the glutamate, lysine and threonine production capabilities of these recombinant strains of C. glutamicum were tested in comparison to the respective host strains. No PCx activity was observed in the pyc-inactive mutants whereas the pyc-overexpressing strains showed eight-to elevenfold higher specific PCx activity when compared to the host strains. In a detergent-dependent glutamate production assay, the pyc-overexpressing strain showed more than sevenfold higher, the PCx-deficient strain about twofold lower glutamate production than the wild-type. Overexpression of the pyc gene and thus increasing the PCx activity in a lysine-producing strain of C. glutamicum resulted in approximately 50% higher lysine accumulation in the culture supernatant whereas inactivation of the pyc gene led to a decrease by 60%. In a threonine-producing strain of C. glutamicum, the overexpression of the pyc gene led to an only 10 to 20% increase in threonine production, however, to a more than 150% increase in the production of the threonine precursor homoserine. These results identify the anaplerotic PCx reaction as a major bottleneck for amino acid production by C. glutamicum and show that the enzyme is an important target for the molecular breeding of hyperproducing strains.
منابع مشابه
Pyruvate Carboxylase as Bottleneck for Amino Acid Production 295 Pyruvate Carboxylase is a Major Bottleneck for Glutamate and Lysine Production by Corynebacterium glutamicum
Corynebacterium glutamicum possesses both phosphoenolpyruvate carboxylase (PEPCx) and pyruvate carboxylase (PCx) as anaplerotic enzymes for growth on carbohydrates. To analyze the significance of PCx for the amino acid production by this organism, the wild-type pyc gene, encoding PCx, was used for the construction of defined pyc-inactive and pyc-overexpressing strains and the glutamate, lysine ...
متن کاملStudy on roles of anaplerotic pathways in glutamate overproduction of Corynebacterium glutamicum by metabolic flux analysis
BACKGROUND Corynebacterium glutamicum has several anaplerotic pathways (anaplerosis), which are essential for the productions of amino acids, such as lysine and glutamate. It is still not clear how flux changes in anaplerotic pathways happen when glutamate production is induced by triggers, such as biotin depletion and the addition of the detergent material, Tween 40. In this study, we quantita...
متن کاملEffect of pyruvate carboxylase overexpression on the physiology of Corynebacterium glutamicum.
Pyruvate carboxylase was recently sequenced in Corynebacterium glutamicum and shown to play an important role of anaplerosis in the central carbon metabolism and amino acid synthesis of these bacteria. In this study we investigate the effect of the overexpression of the gene for pyruvate carboxylase (pyc) on the physiology of C. glutamicum ATCC 21253 and ATCC 21799 grown on defined media with t...
متن کاملFermentative Production of Lysine by Corynebacterium glutamicum from Different Carbon Sources
Production of lysine by Corynebacterium glutamicum (PTCC 1532) from different agricultural by-products (molasses and pulpy waste date) was compared to glucose as raw materials. For this purpose, ammonium sulphate was selected as a constant nitrogen source. The effect of different nitrogen sources was also investigated with glucose as a constant carbon source. The production of L-lysine was exam...
متن کاملMetabolic responses to pyruvate kinase deletion in lysine producing Corynebacterium glutamicum
BACKGROUND Pyruvate kinase is an important element in flux control of the intermediate metabolism. It catalyzes the irreversible conversion of phosphoenolpyruvate into pyruvate and is under allosteric control. In Corynebacterium glutamicum, this enzyme was regarded as promising target for improved production of lysine, one of the major amino acids in animal nutrition. In pyruvate kinase deficie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of molecular microbiology and biotechnology
دوره 3 2 شماره
صفحات -
تاریخ انتشار 2001